The anisotropic temperature factor in triclinic coordinates. By Jürg Waser, Department of Chem-

 istry, The Rice Institute, Houston, Texas, U.S.A.(Received 26 May 1955)

The problem of finding the principal axes of the ellipsoid describing the anisotropic temperature factor in a system of oblique axes has been recently treated (Rollett \& Davies, 1955) by first introducing a set of orthogonal axes. It is, however, simpler and more directly solved in the original system of axes, as will be shown in the following.

Consider the triclinic axes \mathbf{a}_{j} with corresponding reciprocal axes \mathbf{b}_{j}. The anisotropic temperature factor of a given atom is of the form

$$
\exp \left(-\sum_{i j} B_{i j} h_{i} h_{j}\right)
$$

where the h_{i} are the indices of a given reflection which has the reciprocal-lattice vector $\mathbf{h}=\sum_{i} h_{i} \mathbf{b}_{i}$ associated with it. The $B_{i j}=B_{j i}$ are the components of a symmetric tensor describing the temperature effect. More generally, in terms of a continuous reciprocal-space rector $\mathbf{q}=\sum_{i} q_{i} \mathbf{b}_{i}$, the temperature factor has the form

$$
\exp \left(-\sum_{i j} B_{i j} q_{i} q_{j}\right)
$$

Consider the surface, in reciprocal space, for which the temperature factor is constant,

$$
\text { i.e. } \sum_{i j} B_{i i} q_{i} q_{j}=\text { const. }=B
$$

Owing to the physical nature of the tensor $B_{i j}$ the quadratic form is positive definite and this equation represents an ellipsoid. The problem of finding the principal axes of this ellipsoid is the same as that of finding vectors \mathbf{q} for which $q^{2}=\sum_{j} q_{i} q_{j} \mathbf{b}_{i} \cdot \mathbf{b}_{j}$ is stationary with the subsidiary condition

$$
\begin{equation*}
\sum_{i j} B_{i j} q_{2} q_{j}=B \tag{1}
\end{equation*}
$$

Thus, introducing the Lagrange multiplier $1 / \lambda$, we have

$$
\delta\left[\sum_{i j}\left(\mathbf{b}_{i} \cdot \mathbf{b}_{j}-B_{i j} / \lambda\right) q_{i} q_{j}\right]=0
$$

whence

$$
\begin{equation*}
\sum_{i}\left(B_{i j}-\lambda \mathbf{b}_{i} \cdot \mathbf{b}_{j}\right) q_{i}=0 ; j=1,2,3 \tag{2}
\end{equation*}
$$

These three linear homogeneous equations for the q_{i} have non-trivial solutions only when the determinant of the coefficients vanishes:

$$
\begin{equation*}
\left\|B_{i j}-\lambda \mathbf{b}_{i} \cdot \mathbf{b}_{j}\right\|=0 \tag{3}
\end{equation*}
$$

This represents a cubic equation in λ which has three real, positive solutions (since the quadratic form is positive definite) which we shall call $\lambda^{(r)}, r=1,2,3$. For each $\lambda^{(r)}$, (1) and (2) determine a set $q_{i}{ }^{(r)}$ and thus a vector $\mathbf{q}^{(r)}$ which points along a principal axis.

When \mathbf{q} is set equal to $\mathbf{q}^{(r)}$ equations (1) and (2) yield $\lambda^{(r)}\left(q^{(r)}\right)^{2}=B$, so that the r^{\prime} th principal axis has the length $q^{(r)}=\left(B / \lambda^{(r)}\right)^{\frac{1}{2}}$. When all $\lambda^{(r)}$ are different from each other, the different $\mathbf{q}^{(r)}$ can be shown (by the use of (2)) to be perpendicular to each other. If two or three $\lambda^{(r)}$ are identical the corresponding $\mathbf{q}^{(r)}$ are not completely determined but can always be chosen mutually per-
pendicular (ellipsoid of revolution or sphere). We assume that the $\mathbf{q}^{(r)}$ have been chosen in this way so that

$$
\begin{equation*}
\mathbf{q}^{(r)} \cdot \mathbf{q}^{\left(r^{\prime}\right)}=\sum_{i j} q_{i}^{(r)} q_{j}^{\left(r^{\prime}\right) \mathbf{b}_{i} \cdot \mathbf{b}_{j}=\delta_{r r^{\prime}} B / \lambda^{(r)}, ~, ~} \tag{4}
\end{equation*}
$$

and introduce a dimensionless cartesian coordinate system with axes parallel to the principal axes. The base vectors are:

$$
\mathbf{e}_{r}=\sum_{i}\left(q_{i}^{(r)} / q^{(r)}\right) \mathbf{b}_{i} ; e_{r}=1 ; r=1,2,3
$$

Let Q_{j} be the components of \mathbf{q} in this system, $\mathbf{q}=$ $\sum_{j} Q_{j} \mathbf{e}_{j}$. Since the q_{j} transform with the inverse transposed transformation matrix of the b_{i},

$$
q_{i}=\sum_{j}\left(q_{i}^{(j)} / q^{(\lambda)}\right) Q_{j}
$$

In terms of the new coordinates Q_{j} the quadratic form (1) becomes diagonalized,

$$
\sum_{i j} B_{i j} q_{i} q_{j}=\sum_{r} \lambda^{(r)} Q_{r}^{2}
$$

The Fourier transform of $\exp \left(-\sum_{r} \lambda^{(r)} Q_{r}^{2}\right)$ is $\left[\Pi_{r}\left(\pi / \lambda^{(r)}\right)^{\frac{1}{2}}\right] \exp \left[-\sum_{r}\left(\pi^{2} / \lambda^{(r)}\right) X_{r}^{2}\right]$, where the X_{r} are the components of the displacement x of the atom considered in the system extended by the \mathbf{e}_{r}. Along the axis \mathbf{e}_{r} the mean square displacement is

$$
\begin{aligned}
& \left\langle X_{r}^{2}\right\rangle_{\text {ave. }}=\left[\boldsymbol{\Pi}\left(\pi / \lambda^{(r)}\right)^{\frac{1}{2}}\right] \\
& \quad \times \iiint_{r}^{2} X_{r}^{2} \exp \left(-\sum_{j} \pi^{2} X_{j}^{2} / \lambda^{(j)}\right) d X_{1} d X_{2} d X_{3}=\lambda^{(r)} / 2 \pi^{2}
\end{aligned}
$$

(see also Cochran, 1954). More generally, the mean square of the component of the displacement in an arbitrary direction characterized by direction cosines α_{i} is given by

$$
\left\langle\left(\sum_{i} \alpha_{i} X_{i}\right)^{2}\right\rangle_{\text {ave. }}=\sum_{i} \alpha_{i}^{2} \lambda^{(i)} / 2 \pi^{2}
$$

This relationship is described by the ellipsoid $\sum_{i} x_{i}^{2} \lambda^{(i)} / 2 \pi^{2}$ $=1$ in the following way. Its principal axes have the lengths $\left(\lambda^{(r)} / 2 \pi^{2}\right)^{-\frac{1}{2}}$ and, more generally, the length of a radius vector in the direction characterized by cosines α_{i} is $\left(\sum_{i} \alpha_{i}^{2} \lambda^{(i)} / 2 \pi^{2}\right)^{-\frac{1}{2}}$, which is the inverse of the root-meansquare displacement of the atom in this direction. On the other hand, the surface generated by a radius vector

$$
\mathbf{r}=\left(\sum_{j} \alpha_{j}^{2} \lambda^{(j)} / 2 \pi^{2}\right)^{\frac{1}{2}} \sum_{i} \alpha_{i} \mathbf{e}_{i},
$$

whose length is equal to the r.m.s. displacement in the direction (x_{i}), is of the fourth order.

I wish to thank Dr A. L. Patterson for criticism of the manuscript.

References

Cochran, W. (1954). Acta Cryst. 7, 503.
Rollett, J. S. \& Davies, D. R. (1955). Acta Cryst. 8, 125.

